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Instability and transition to turbulence in a temporally evolving free shear layer
of an electrically conducting fluid affected by an imposed parallel magnetic field is
investigated numerically. The case of low magnetic Reynolds number is considered.
It has long been known that the neutral disturbances of the linear problem are
three-dimensional at sufficiently strong magnetic fields. We analyse the details of
this instability solving the generalized Orr–Sommerfeld equation to determine the
wavenumbers, growth rates and spatial shapes of the eigenmodes. The three-
dimensional perturbations are identified as oblique waves and their properties are
described. In particular, we find that at high hydrodynamic Reynolds number, the
effect of the strength of the magnetic field on the fastest growing perturbations is
limited to an increase of their oblique angle. The dimensions and spatial shape of
the waves remain unchanged. The transition to turbulence triggered by the growing
oblique waves is investigated in direct numerical simulations. It is shown that initial
perturbations in the form of superposition of two symmetric waves are particularly
effective in inducing three-dimensionality and turbulence in the flow.

1. Introduction
We consider the instability and subsequent transition to turbulence in a free shear

layer of an incompressible viscous electrically conducting fluid with the initial velocity
profile

U = (U (z), 0, 0), U (z) → ± U0 at z → ± ∞. (1.1)

A uniform time-independent magnetic field B = (B, 0, 0) in the streamwise direction
is imposed in the entire flow domain. We assume that the magnetic Reynolds number
is small

Rem ≡ U0L

λ
� 1. (1.2)

Here, L is the length scale, which we take to be the initial vorticity thickness of
the layer, and λ=(σµ0)

−1 is the magnetic diffusivity, with σ being the electrical
conductivity of the fluid and µ0 the magnetic permeability of a vacuum. The
condition (1.2) is typical for laboratory and industrial flows of liquid metals, molten
oxides, and other electrically conducting materials. It allows us to apply the low-Rem

approximation (Davidson 2001), according to which the perturbations of the magnetic
field induced by the fluid motion adjust instantaneously to the variations of the flow
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and can be neglected in comparison with the imposed field B in the expression for
the Lorentz force.

In the approximation, the non-dimensional equations of motion are

∂v

∂t
+ (v · ∇)v = −∇p +

1

Re
∇2v + N ( j × B) , ∇ · v = 0, (1.3)

where the electric current j is calculated according to

j = −∇φ + v × B (1.4)

with the electric potential φ determined as a solution of the Poisson equation

∇2φ = B · (∇ × v) (1.5)

with proper boundary conditions. The non-dimensional parameters are the Reynolds
number and the magnetic interaction parameter

Re ≡ U0L

ν
, N ≡ σB2L

ρU0

. (1.6)

The value of N gives an estimate to the ratio between the Lorentz and inertia forces,
thus evaluating the potential of the magnetic field to suppress and transform the
perturbations.

No electric currents and Lorentz forces are generated in the unperturbed basic flow
(1.1). This can be verified easily by taking the curl of the Ohm’s law (1.4), which leads
to

∇ × j =(B · ∇)v. (1.7)

For any velocity field, which is uniform in the direction of the magnetic field, the
right-hand side of (1.7) is zero and the only solution in the absence of externally
applied electric currents is j =0.

The basic flow (1.1) can be viewed as a simplified model of shear layers coplanar to a
strong imposed magnetic field, which can appear in low-Rem magnetohydrodynamics
(MHD) in such common situations as thermal convection, jets, wakes behind bodies,
or at sharp non-uniformities of the field or electromagnetic boundary conditions (see,
e.g. Moreau 1990; Davidson 2001; Müller & Bühler 2001). It can also be considered
as a representative of parallel vortex sheets developing in strongly anisotropic MHD
turbulence (Zikanov & Thess 1998). The importance and seeming simplicity of the
flow caused attention to it in the past. We will briefly review the history of the subject
before proceeding to our contribution.

Stability of a shear velocity profile in the presence of a parallel magnetic field was
first analysed by Michael (1953), Stuart (1954) and Drazin (1960). Linear instability
to normal modes

v′(x, y, z, t) = v(z) exp[i(kxx + kyy − λt)] (1.8)

was considered. Here, kx and ky are the real wavenumbers in the x- and y-directions,
and λ= ω + iβ is the complex phase velocity. The basic flow is unstable if at
least one solution (1.8) has β > 0. Analysing the solutions of the generalized Orr–
Sommerfeld equation for several basic velocity profiles, it was found that the magnetic
field stabilizes the basic flow because of the additional suppression of the growing
perturbation by the Joule dissipation. The analysis was, however, based on the
erroneous assumption that the Squire transformation could be applied to the MHD
stability problem with the same consequences as in the classical non-magnetic case.
Only two-dimensional disturbances with ky = 0 were considered.
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The correct view was taken by Hunt (1966), who showed that the three-dimensional
perturbations could cause instability at lower Reynolds numbers than the two-
dimensional ones if the magnetic field was sufficiently strong. The reasoning was
simple. If we consider an arbitrary mode (1.8) with ky �= 0, the non-dimensional
generalized Orr–Sommerfeld problem becomes

(kxU − λ)(v′′
z − k2vz) − kxvzU

′′ + ik2
xNvz = − i

Re

(
viv

z − 2k2v′′
z + k4vz

)
, lim

z→±∞
vz = 0.

(1.9)

Here, vz is the z-component of the perturbation velocity, k = (k2
x + k2

y)
1/2 is the

wavenumber, and primes stand for the derivatives in the z-direction. We can define
the oblique angle θ = cos−1(kx/k) as the angle between the direction of the wave
propagation and the basic flow.

Following Squire (1933), we can rewrite (1.9) as

(U − λ̂)(v′′
z − k2vz) − vzU

′′ + ikN̂vz = − i

kR̂e

(
viv

z − 2k2v′′
z + k4vz

)
, lim

z→±∞
vz = 0,

(1.10)

where the new non-dimensional parameters are R̂e =(kx/k)Re and N̂ =(kx/k)N , and

λ̂= λ/kx . The solution of the problem can be expressed as a relation between the

parameters, the wavenumber, and the eigenvalue λ̂

F (λ̂, k, R̂e, N̂) = 0, (1.11)

which is the same for any angle θ and, thus, can be determined assuming two-
dimensional waves with θ = 0. Let us now consider the critical Reynolds number Rec

defined as the minimum Re occurring over all k and ω, at which a neutral mode with
β = 0 is observed. From (1.11), we find

Fc(R̂ec, N̂) = 0 or R̂ec =G(N̂ ). (1.12)

In the non-magnetic case with N = 0, this results in the Squire theorem that the
two-dimensional perturbations are always first to become unstable since the smallest

critical Reynolds number Rec = (k/kx)R̂ec = R̂ec/cos θ is always for the perturbations
with θ = 0. If, on the other hand, N > 0, the situation is more complex as was pointed
out by Hunt (1966). One has to take into account that the stabilizing Lorentz force
decreases with decreasing velocity gradient in the direction of the magnetic field, i.e.
with the decreasing wavenumber kx = k cos θ (see (1.9)). The x-independent modes
with θ = π/2 do not generate any Lorentz forces at all. Thus, as the angle θ increases
and the wave crests turn toward the flow direction, we deal with two competitive
effects. The inertial energy transfer from the basic flow to the unstable wave becomes
weaker, but so does the rate of the suppression by the magnetic field. For certain N ,
the second effect can have a stronger impact and a three-dimensional mode can cause
the instability at smaller Re than a two-dimensional one.

From the formal viewpoint, it was shown by Hunt (1966) that the information on
the type of primary instability is entirely provided by the solution of (1.10) expressed

in the form of the critical curve R̂ec = G(N̂), which can be rewritten as

Rec =
1

cos θ
G(N cos θ). (1.13)

Figure 1 shows G(N̂) obtained in our calculations presented in more details in the
following section. According to (1.13), the stability limits to three-dimensional modes
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Figure 1. (a) Critical modified Reynolds number R̂e as a function of the modified magnetic

interaction parameter N̂ . The tangent line to the curve from the origin is also shown. (b) The

enlarged portion of the curve at small N̂ and R̂e.

with θ > 0 are obtained by multiplying both abscissa and ordinate by 1/ cos θ , i.e. by
translating along the line drawn from the origin to the chosen point.

It can be seen that there is a special point F , where the tangent line drawn from

the centre touches the critical curve G(N̂). (For better accuracy, the point F was

found as the minimum of the curve R̂e(N̂ )/N̂ .) In our calculations, NF = 0.106 and
ReF = 3.55. The abscissa NF corresponds to the threshold value of the magnetic
interaction parameter. At N <NF , the critical Reynolds numbers for θ > 0 lie above
the curve. The first instability is to two-dimensional perturbations and the curve
Re= G(N) supplies the stability limits. At N > NF , however, the critical points for
θ > 0 are below the curve. The first instability is to three-dimensional disturbances.
In fact, it can be shown (see figures 2 and 3 by Hunt 1966 for a simple geometrical
proof) that the oblique angles of the first unstable modes are such that the stability
limits lie on the tangent line OF to the curve. The critical Reynolds numbers Rec

and the oblique angles θc of the neutral modes are given by

Rec = ReF

NF

N
, θc = cos−1

(
NF

N

)
. (1.14)

The neutral modes themselves are defined by a single solution of the modified

equation (1.10) taken at the point N̂ = NF and R̂e = ReF . The work of Gotoh (1971)
was the first where the neutral curves of the eigenvalue problem (1.10) were actually
calculated and the critical Reynolds number was determined as a function of the
strength of the magnetic field and k. The basic velocity profile U (z) = tanh z was
considered. The Hartmann number Ha = (ReN)1/2 representing the ratio between
Lorentz and viscous forces was used as a measure of the strength of the magnetic
field. It was found that the three-dimensional perturbations become more unstable
than the two-dimensional ones if the field is sufficiently strong (Ha > 0.52).

At NF = 0.106 and ReF = 3.55, we found the threshold Hartmann number to be
Ha = 0.61. This is slightly different from the result of Gotoh (1971), which can be
explained by the difference in the basic velocity profile.
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In this paper, we report the results of the detailed analysis of the linear instability
and the resulting transition to turbulence. A free shear layer with the basic profile

U (z) = erf

(√
πz

2

)
(1.15)

is considered. The linear part of the analysis presented in the next section goes
substantially beyond the investigation of Gotoh (1971). In addition to the type of
instability (two-dimensional or three-dimensional) and the critical Reynolds numbers
we investigate how the growth rate β , wavenumber k and angle θ of the neutral
and the fastest growing perturbations change with N and Re. The growth and
nonlinear evolution of the unstable three-dimensional disturbances and the transition
to turbulence are studied in DNS calculations described in § 3. Finally, § 4 contains
concluding remarks.

2. Linear stability analysis
We analyse linear stability of the basic flow (1.1) to normal modes (1.8). The

standard simplifying assumption is made (see Drazin & Reid 1981 for a review of
earlier results for non-magnetic flows and Michael 1953; Drazin 1960; Hunt 1966;
Abas 1969; Gotoh 1971 for the MHD case), according to which the decay of the
basic flow by viscous diffusion is neglected in the linear stability analysis. One has
to remember that this ‘frozen basic flow’ approach is strictly justified and in full
agreement with the nonlinear analysis only if the typical time ∼1/β of the growth of
an unstable mode is much smaller than the diffusion time ∼Re of the basic profile.
The condition of scale separation is satisfied for the majority of the results presented
below. In the cases when the two time scales are comparable (typically, at small Re,
large N , and/or small k) the identified unstable modes can be viewed as related to
instantaneous instability of the basic flow at a given state of its viscous decay.

The eigenvalue problem (1.10) is solved numerically using the traditional shooting
approach first applied to the Orr–Sommerfeld equation by Betchov & Szewczyk
(1963). The solution is found in a layer bounded at z = ∓Lz with Lz chosen sufficiently
large so that U (∓Lz) ≈ ∓1 and U ′′(∓Lz) ≈ 0 with a high degree of accuracy and the
artificial boundary conditions do not affect the solution (for the results shown, Lz

was between 15 and 25). Exponential solutions of the linear differential equation with
constant coefficients obtained from (1.10) at U (∓Lz) = ∓1 and U ′′(∓Lz) = 0 are used
to derive the boundary conditions for vz. The Runge–Kutta method of the fourth-
order of accuracy with automatically controlled step is employed for integration
at −Lz � z � Lz. For better convergence of the numerical algorithm, the shooting
is performed from the boundaries z = ∓Lz to the centre z =0 (see Maslowe 1981).
The matching conditions for vz, its first, second and third derivatives are used to
determine the eigenvalue. A similar algorithm was applied to find the eigenvalues and
eigensolutions of the inviscid problem with Re= ∞, when only two conditions needed
to be satisfied.

The shooting algorithm was designed for the search of general complex eigenvalues.
However, as in the classical non-magnetic case, the eigenvalues with the largest β

were invariably found to be purely imaginary with ω = 0.
The results of calculations are presented in figures 2–4. Figures 2(a) and 2(b) show

the strong stabilizing effect of the magnetic field on the two-dimensional perturbations.
We can see that even a moderate field suppresses the growth and reduces the range
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of unstable wavenumbers. Sufficiently strong fields can completely stabilize the shear
layer at finite Re.

It has to be stressed that the complete stabilization requires non-zero viscosity.
It is shown in the inviscid two-dimensional analysis of Thess & Zikanov (2005)
that the free shear layer (1.1) cannot be completely stabilized by the magnetic field.
There always exists a range of small k, where the flow is unstable. Such behaviour
is in agreement with the intuitive picture, according to which the rate of the Joule
dissipation decreases with increasing wavelength in the direction of the magnetic
field, and, thus, the perturbations become less and less sensitive to the action of the
magnetic field as k → 0. Our results presented in figures 2(a) and 2(b) show that the
picture is misleading in the case of a shear layer with finite viscosity. The magnetic
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field stabilizes the eigenmodes at both the large-k and small-k ends of the instability
range. This was observed for two-dimensional and three-dimensional perturbations
(see figure 2b, c) at all values of Re< ∞ and N > 0 tested in our study. We do not have
a simple physical explanation of the stabilization of long waves, but this phenomenon
was detected earlier in the calculations of Gotoh (1971) and the low-k analysis of
Abas (1969) in the form of a second branch of the neutral curve appearing at small
k in the presence of a parallel magnetic field.

Typical dependence of β on θ and k for the three-dimensional disturbances is
shown in figure 2(c). The growth rate changes slowly with the wavenumber and the
oblique angle. There are substantial ranges of k and θ where β is close to βmax.

Figure 2(d) shows the results obtained for the inviscid problem Re = ∞ at N = 0.5.
Curves in figures 2(c) and 2(d) are qualitatively similar, apart from the suppression
of the long waves at finite Re. As discussed below, the characteristics of the unstable
modes converge quickly with growing Re to those of the inviscid modes.

Figure 3 presents the curves of neutral stability defined by the condition β =0.

Figure 3(a) shows the critical Reynolds number R̂ec obtained as a function of the
wavenumber k through the solution of the transformed equation (1.10). As has already
been illustrated in figures 2(a) and 2(b), an imposed magnetic field stabilizes the layer.
A second branch of the neutral curve appearing at small k is a counterpart of the
second branches found by Gotoh (1971) and Abas (1969) and a manifestation of the

stabilization of long waves. The critical curve R̂ec(N̂ ) shown in figure 1 was obtained
by minimizing the neutral curves in figure 3(a) over k.

The neutral curves corresponding to arbitrary three-dimensional perturbations can,
in principal, be directly derived from figure 3(a). The figure, however, does not
give a clear picture of the effect of the oblique angle θ on Rec. In particular, it is
difficult to say which value of θ corresponds to the most dangerous perturbation.
In figure 3(b), we plot neutral curves for N =0.4 and different values of θ . The
critical Reynolds number Rec =13.4 corresponds to a mode with θ = 0.41π. The
point N = 0.4, Rec =13.4 is marked as point E on the straight line in figure 1(a).

Properties of the fastest growing perturbations (those with the largest growth rate
βmax at given N and Re> Rec) are illustrated in figure 4. βmax and the corresponding
wavenumber kmax and oblique angle θmax are shown as functions of N and Re.
The curves for N = 0 and N = 0.1 illustrate the behaviour typical for the case of
weak magnetic field when the neutral and the fastest growing perturbations are
always two-dimensional. The opposite case of strong magnetic fields when the most
dangerous perturbations are invariably three-dimensional is represented by the curves
for N =0.4, N = 0.5 and N = 1.

We found that at intermediate N (curves for N =0.2 and N =0.3 in figure 4c

serve as examples), the fastest growing perturbations are three-dimensional only in
a finite range of Re (at Re < 10 if N = 0.2 and Re< 55 if N = 0.3). At larger Re,
the strongest growth is provided by the two-dimensional waves with θ = 0. We found
that the boundary value of N between the regions of the two-dimensional and three-
dimensional fastest growing perturbations is a function of Reynolds number. At the
smallest Re (i.e. at the stability curve), the border is at N =NF = 0.106. In the inviscid
case with Re = ∞, the three-dimensional perturbations start to dominate when N

exceeds 0.339. The situation is illustrated by the diagram in figure 4(d).
Figures 4(a) to 4(c) also show kmax, βmax and θmax obtained for Re = ∞. Clear

asymptotic behaviour is observed with the characteristics of the perturbations fast
approaching the inviscid limits with growing Re. For three-dimensional perturbations
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at moderate and large Re, the strength of the magnetic field affects the angle θ , i.e. the
orientation of the fastest growing waves, but not their wavelength. The wavenumber
curves kmax(Re) merge at kmax ≈ 0.323 (see figure 4a).

The typical eigenfunction vz(z) of a three-dimensional perturbation is shown in
figure 5(a). In the three-dimensional case, we must solve an additional boundary-
value problem to determine the profiles of other variables and obtain the complete
velocity field of the disturbance. The problem can be formulated, for example, in
terms of the z-component of the current density jz = −φ′ − vy as

(β+ikxU )(j ′′
z −k2jz)−Nk2

xjz = kxkyU
′vz+

1

Re

(
j iv
z −2k2j ′′

z +k4jz

)
, lim

z→±∞
jz = 0. (2.1)

In contrast to the Orr–Sommerfeld problem (1.9), this equation is inhomogeneous and
its solution is determined by the known eigenfunction vz. The numerical integrations
of (2.1) and (1.9) were carried out simultaneously. The difficulty we met was to
provide the correct boundary conditions for jz at z = ∓Lz. Asymptotic behaviour of
jz could not be determined from the equation itself since the inhomogeneous term
of (2.1) vanishes at large |z|, where U (z) = ∓1 and U ′ =U ′′ = 0. Instead, we used
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ε 10−2 10−3 10−4 10−5 10−6

β 7.15 × 10−2 5.43 × 10−2 5.31 × 10−2 5.29 × 10−2 5.29 × 10−2

Table 1. Convergence of the eigenvalues of the perturbed problem at Re= ∞, N = 0.5,
k = 0.323 and θ = 0.262π.
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the perturbation method adding artificial perturbation terms +εjz and +εvz to the
right-hand sides of (1.9) and (2.1), respectively. Here, ε is the formal parameter, and
the correct solution is obtained in the limit of ε = 0. The calculations showed the
efficiency and accuracy of the method. We found fast convergence at ε → 0, both
for eigenvalues and eigenfunctions (see table 1 for an illustration). The x- and y-
components of the velocity are shown in figure 5(b), while figures 5(c) and 5(d) show
the z-component of the current density and the electrical potential.

Visual inspection of the velocity fields of three-dimensional eigenmodes (see
figure 7a and accompanying discussion in the next section) reveals a structure
reminiscent of the structure of a usual horizontal Kelvin–Helmholtz roll with the
only distinction being that its axis is not perpendicular to the direction of the flow,
but is inclined to it at an angle (π/2 − θ).

It was shown in figure 4 that the characteristics of the fastest growing modes
quickly converge to the characteristics of the inviscid modes as Re grows. In order
to investigate the effect of the magnetic field in the asymptotic limit of low viscosity,
we solved the eigenvalue problem at 0 � N � 5 and Re = ∞. The results presented in
figure 6 demonstrate remarkable behaviour. In order to understand it better, we have
to return to the modified Orr–Sommerfeld equation (1.10) and write its solution, the

eigenvalue β̂ (we assume that the oscillation frequency ω is zero) as

β̂ = H (k, N̂ )), (2.2)

where H is some function. The relation can be rewritten as

β = k cos θH (k, N cos θ). (2.3)
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The maximum growth rate βmax is the maximum of the right-hand side of (2.3) taken
over all possible values of k and θ

βmax = max
k,θ

[k cos θH (k, N cos θ)] = kmax cos θmaxH (kmax, N cos θmax). (2.4)

Growth of N changes one of the arguments of the function H , but also affects kmax

and θmax. In the case of two-dimensional perturbations at N < 0.339 the situation is
simple. Increasing N leads to a decrease of both βmax and kmax (stronger magnetic
fields result in slower growth and longer waves). It was shown elsewhere (Thess &
Zikanov 2005) that this behaviour extends continuously to arbitrary large N .

In the case of the three-dimensional fastest growing perturbations, the effect of the
magnetic field is completely different. We can see in figure 6 that kmax is constant
(equal to 0.323) at all N > 0.339. The growth rate βmax and the oblique angle θmax

change with N in such a way that the combination βmax/kmax cos θmax is constant and
approximately equal to 0.241. This means that H (kmax, N cos θmax) = const= 0.241 and,

since kmax does not change, N̂ =N cos θmax has a constant value equal to the critical
value at which θmax departs from zero, i.e. 0.339.

We see that the behaviour of the fastest growing three-dimensional modes is similar
to the behaviour found for the neutral modes by Hunt (1966). All these modes at
different N are, in fact, given by a single solution of the modified Orr–Sommerfeld

equation obtained, this time, at N̂ = 0.339. This was confirmed by the analysis of
the eigenfunction vz(z), which showed the profile independent of N . The conclusion
can be made that the increasing strength of the magnetic field does not affect the
dimensions or spatial shape of the fastest growing Kelvin–Helmholtz waves. Its only
effect is the increase of the oblique angle according to

θmax = cos−1

(
0.339

N

)
. (2.5)

Other features of the asymptotic behaviour of the three-dimensional perturbations
are easy to see. The growth rate is

βmax =0.241kmax cos θmax =
0.026

N
, (2.6)

and the parallel and perpendicular wavelengths are


x =
2π

kmax cos θmax

=57.4N, 
y =
2π

kmax sin θmax

=

x

tan θmax

=
19.5N

(N2 − 0.3392)1/2
. (2.7)

At finite Re, the behaviour does not exactly follow the asymptotic relations (2.5)–
(2.7), but, as illustrated in figure 4, is fairly close to them even at moderate values of
Re.

3. Nonlinear evolution and transition to turbulence
In this section, we report the results of numerical experiments conducted to

investigate the transition to turbulence triggered by the growing oblique waves.
A temporally evolving mixing layer affected by an imposed parallel magnetic field
is considered. We apply the method of direct numerical simulations and try to
reproduce the entire transition. Another promising approach, namely the nonlinear
stability analysis aiming to predict the secondary pattern formation is not pursued in
our paper.
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The numerical method is based on the fully de-aliased Fourier pseudo-spectral
approach in the horizontal directions and the second-order finite-difference scheme
in the normal direction. A more detailed description of the numerical algorithm is
available in Zikanov, Slinn & Dhanak (2004). The finite-difference grid is non-uniform
with clustering in the area of strong basic shear. The clustering is achieved by applying
the mapping

z = Lz

sinh(A(ζ − 0.5))

sinh(0.5A)
, (3.1)

where 0 � ζ � 1, the computational domain is −Lz � z � Lz, and the stretching
coefficient is A= 4. The boundary conditions at z = ± Lz are those of a stress-free
impermeable wall for the velocity and zero normal derivative for the electric potential.
The periodic boundary conditions are assumed in the streamwise (x) and spanwise
(y) directions. For the results shown below, the vertical size of the domain is 2Lz = 40.
Test runs with 2Lz = 50 showed that such values of Lz secure negligible influence
of the artificial boundary conditions on the solution. In the x- and y-directions,
the computational domain is rectangular with the dimensions Lx = 2π/kx,max and
Ly =2π/ky,max , where kx,max and ky,max are the components of the wavenumber vector
corresponding to the most unstable perturbation for given parameters.

The time integration is performed using the time-splitting projection algorithm.
Non-linear, viscous and electromagnetic terms of the momentum equation are
integrated explicitly using the Adams–Bashforth scheme of the third-order of accuracy
with adjustable time step (Zikanov et al. 2004). The Poisson equations for pressure
p and electric potential φ are solved using the Fourier transform in the x- and
y-directions and the double-sweep algorithm in the z-direction.

The results presented below were calculated with the numerical resolution based on
256 × 256 Fourier modes and 300 vertical grid points. Test runs conducted with the
resolution 128 × 128 × 390 showed no significant differences. The ‘3/2 rule’ was used
to remove aliasing errors, which reduced the true resolution in the x and y directions
by one-third. The algorithm was parallelized and typically executed on 8 to 20 CPUs.
As a test of the numerical model, the results of Metcalfe et al. (1987) for the transition
in a free shear layer with Re= 400 and N =0 were reproduced with good agreement.

Transition to turbulence in a free shear layer is a complex process, which can proceed
along many different paths and is affected by many different mechanisms. Extensive
earlier investigations of the non-magnetic case (see e.g. Metcalfe et al. 1987; Rogers &
Moser 1992, 1993) identified the mechanisms and showed that their relative import-
ance was largely determined by the composition of the initial perturbations added to
the basic flow and the features of the model such as the horizontal size of the com-
putational domain (one or several wavelengths), choice between temporal or spatial
evolution of the layer, etc. In real flows with the initial perturbations being some form
of noise, the transition is likely to be a result of superposition of several mechanisms.

In the flow with magnetic field, the scenario of transition is likely to be equally
complex and dependent on multiple factors. Our intention in this study is not to
reveal and document the process in all its complexity. The goal is rather to conduct
the first analysis of a novel transition scenario based on the growth of the unstable
oblique waves.

In the simulations, we use Re= 500 in all runs, N = 0.5, N =1.0, and, for
comparison, N =0. The initial conditions are superpositions of the basic flow (1.15),
the eigensolution v1 for the fastest growing modes, and the random velocity field v2,

v(x, y, z, 0) = U(z) + A1v1 + A2v2. (3.2)
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Figure 7. Horizontal projections of the initial velocity field in the cross-section at z = 0.
N = 0.5, Re = 500, kmax = 0.323, and θmax = 0.262π. (a) one-wave and (b) two-wave
disturbance.

The amplitudes A1 and A2 are chosen so that the initial energies of the eigensolution
and random noise are, respectively, 10−4 and 10−6 in non-dimensional units. The
parameters of the eigensolutions are θmax = 0 and kmax = 0.43 for N = 0, θmax = 0.262π
and kmax = 0.323 for N = 0.5, and θmax = 0.39π and kmax = 0.323 for N = 1.

In the case of oblique waves, the symmetry of the problem results in equal linear
growth rates of the two symmetric waves with positive and negative oblique angles, i.e.
with k = (kx, ky) and k = (kx, −ky), and of any their linear combination. We performed
simulations for two such combinations in the initial conditions (3.2), a single wave with
the oblique angle θmax > 0 and a superposition of two waves with equal amplitudes
and angles ± θmax (figure 7). The initial energies of both types of disturbance are
equal.

We start with the simulations performed at N = 0.5 and the initial conditions (3.2)
consisting of one or two oblique waves. Figure 8 shows the evolution of the total
energy of the flow E, the energy of the three-dimensional perturbations of the mean
flow E′, and the rates of viscous and magnetic dissipation ε and µ calculated as

E =
1

V

∫
V

(
v2

x + v2
y + v2

z

)
dV , E′ =

1

V

∫
V

(
(vx − 〈vx〉)2 + v2

y + v2
z

)
dV ,

ε =
1

V Re

∫
V

(v · ∇2v) dV , µ =
N

V

∫
V

(( j × B) · v) dV .

⎫⎪⎬
⎪⎭ (3.3)

Here 〈. . .〉 stands for horizontal averaging, 〈f 〉 =(1/(LxLy))
∫ Ly

0

∫ Lx

0
f dx dy, and V is

the volume of the computational domain. Curves of E and ε corresponding to the
purely diffusive decay of the unperturbed basic flow are shown for comparison.

The initial development of both types of perturbation is dominated by nearly linear
growth of the eigenmodes as illustrated by the closeness of the perturbation energy
curves in figure 8(b) to the exponential curve ∼ exp(2 × 0.0529t), where β =0.0529 is
the growth rate predicted by the linear analysis. There is a small discrepancy between
the linear and nonlinear growth rates, even at the earliest stages of the evolution.
This can be explained by the viscous diffusion of the mean flow and by the effect of
random noise.
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Figure 8. Evolution of total energy (a), energy of three-dimensional perturbations of the
mean flow (b), viscous (c) and magnetic (d) dissipation rates. The transition at N = 0.5,
Re= 500, kmax =0.323, and θmax = 0.262π is triggered by a single oblique wave (−−−) or by
a superposition of two symmetric waves (—). Dotted lines in (a) and (c) correspond to the
diffusion of the unperturbed basic velocity profile.

It can be seen in figure 8 that there are strong differences in the behaviour of the
one-wave and two-wave solutions at the nonlinear and turbulent stages. The flow
initiated by two waves is characterized by much larger (about an order of magnitude)
peak energy of the perturbations (see figure 8b) and stronger viscous and magnetic
dissipations (see figure 8c, d). Its development leads to much stronger mixing of
the mean flow as illustrated by the drop in the total energy in figure 8(a). The
three-dimensional perturbations evolving from the one-wave initial conditions are
much weaker, although undoubtedly present, as can be seen by the growth of E′ in
figure 8(b), and faster than the diffusive decrease of E in figure 8(a). A feature of this
flow (figure 8c, d) is that the suppression of the perturbations occurs in a relatively
short time period characterized by a sharp peak in the magnetic dissipation curve. The
viscous dissipation rate is much weaker. Furthermore, it can be noted that the main
contribution to ε shown in figure 8(c) is provided by the dissipation of the mean flow.

The difference between the one-wave and two-wave solutions is due to different
types of secondary instability and different ways, in which turbulence appears in the
flows. This becomes evident after we consider the evolution of the spatial structure of
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Figure 9. Contours of streamwise velocity (in the z = 0 plane) are shown for solutions at
Re =500, N = 0.5, kmax = 0.323, and θmax = 0.262π obtained with one wave (a, b) and two
waves (c, d) in the initial conditions. The snapshots are taken at the stages of the breakup of
the growing waves (a, c) and decay of turbulence (b, d). (a) t = 162, (b) 251, (c) 153, (d) 327.

the flow illustrated by the contours of streamwise velocity (figure 9), two-dimensional
energy power spectra (figure 10), and the isosurfaces of the amplitude of perturbation
vorticity ω = |∇ × (v − 〈v〉)| (figure 11). The spectra are calculated using the Fourier
transform of the velocity field in the plane z = 0. The plots show the energy E(qx, qy)
of the Fourier modes with the wavenumber vectors k = (qxkx, qyky) as a function
of integers qx and qy . Only half of the wavenumber plane at qx � 0 is depicted.
The left-hand half-plane, which is not shown, corresponds to the complex-conjugate
Fourier modes. Considering the spectra, we have to take into account that only the
modes with even qx + qy can appear in the result of the interaction between the basic
flow, linear unstable modes, and their subharmonics. It is only because of the small-
amplitude noise in the initial conditions that the spectra are filled continuously at the
late turbulent stages of the flow evolution.

In the case of the one-wave solution, the early stages of nonlinear development are
characterized by the growth and deformation of parallel oblique rolls. This can be
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Figure 10. Power energy spectra of velocity fields at z =0 for different moments of time for
solutions at Re= 500, N = 0.5, kmax = 0.323 and θmax = 0.262π obtained with one wave (a–c)
and two waves (d–f ) in the initial conditions. The energy levels are the same in all pictures.
The modes with energy less than 10−8 are blanked. (a) t = 79.0, (b) 162, (c) 251, (d) 78.7,
(e) 153, (f ) 327.

seen in the vorticity field in figure 11(a). We can also see that the dominant modes
of the energy spectrum in figure 10(a) are the principal unstable mode (1,1) and
its subharmonics. The main element of the further development of the flow is the
secondary instability of the oblique rolls. It starts in the form of spanwise waves
(see figures 9a and 11b) and quickly leads to breakup of the rolls and appearance
of weak turbulence around the midplane of the layer (see figures 9b and 11c). The
magnetic field plays a decisive role in the evolution by suppressing the turbulence
and transforming it into anisotropic form. It can be seen that the turbulent eddies
are elongated along the magnetic field lines. The decaying turbulent flow shown in
figures 9(b) and 11(c) is only slightly non-uniform in the x-direction. The effect can
also be seen in the power spectra in figure 10(c). High-qx modes are suppressed by
the magnetic field and the spectrum takes the anisotropic form typical for MHD
turbulence at moderate to high N (Zikanov & Thess 1998; Vorobev et al. 2005).

The flow evolution in the case of the one-wave initial conditions has some features
reminiscent of the non-magnetic scenario (see, for example, Metcalfe et al. 1987;
Rogers & Moser 1992, 1993). The wavelength of the secondary waves in figure 9(a)
is much smaller than the wavelength of the unstable modes of the linear stability
problem for the basic flow. We can assume that the mechanism leading to these
waves is the elliptic instability of strained vortices (Kerswell 2002). Vortical structures
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Figure 11. Isosurfaces of the amplitude of perturbation vorticity ω = |∇ × (v−〈v〉)| are shown
for different moments of time for solutions at Re= 500, N = 0.5, kmax = 0.323 and θmax = 0.262π
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Figure 12. Volume averages of the squares of the x (—), y (−−−) and z(− · −) components
of the perturbation vorticity at Re =500, N =0.5, kmax = 0.323 and θmax =0.262π obtained
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similar to the ‘ribs’ in the ‘braid’ regions (Metcalfe et al. 1987) were observed at
some stages of the flow evolution. There are also substantial differences between the
magnetic and non-magnetic cases because of the suppression and re-orientation of
the secondary structures by the magnetic field and the fact that in the magnetic case
the rolls are not perpendicular to the mean flow. A detailed study of the transition
that would provide a better understanding of these similarities and differences would
require simulations with the three-dimensional perturbations of special form added
to the growing eigensolution. We do not pursue this path and limit our study to
a noise-induced secondary instability because, as discussed below, there is a more
powerful and more interesting transition scenario unique to the MHD case.

The evolution of the flow starting with the two-wave initial conditions is completely
different from the evolution described above. The principal reason is that the two-
wave flow is essentially three-dimensional from the very beginning. It can be seen
in figure 7(b) that superposition of two symmetric eigenmodes results in a cellular
pattern of perturbation velocity. Our simulations show that this pattern is much less
capable of long-term existence as a coherent structure than the one-wave oblique rolls.
The process of its disintegration starts soon after the growing perturbations enter
the nonlinear phase. Even at the earlier stage of the flow development (figure 10d),
non-negligible energy is present in the Fourier modes outside the main subharmonic
branches γ (1, 1), γ (1, −1), γ (1, 0), where γ is an integer number. At a later time, the
excitation grows in amplitude and spreads over a wide range of the wavenumbers
(see figure 10e). (The two-wave simulation described here was as demanding with
regard to the required horizontal numerical resolution as the simulation of the non-
magnetic transition at N = 0. We found that 256 × 256 Fourier modes were required
to represent accurately the perturbations at the peak of their energy.)

It can be seen in figures 9(c), 10(e), and 11(e) that the flow is strongly turbulent
at t > 100. Although remnants of the cellular pattern are still present, substantial
portion of the energy of perturbations is in the small-scale chaotic fluctuations. The
perturbation vorticity grows as illustrated in figure 12 by the volume averages of the
squares of its components Ω2

i = V −1
∫

V
(∇ × v − 〈∇ × v〉)2i dV .
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The subsequent development of the layer is characterized by the decay of turbulence
under the combined action of the viscous and magnetic dissipations and by the vertical
diffusion of turbulence. It can be seen in figure 11(f ) that the region of noticeable
turbulence levels spreads vertically. Substantial vorticity appears at |z| up to 10, where
the basic flow has virtually zero shear. The traces of the cellular pattern disappear
completely (see figures 9d and 11f ).

As expected, in addition to the anisotropy imposed by the mean shear, the magnetic
field generates the typical anisotropy of gradients (elongation of the flow structures
in the direction of B) in the decaying turbulent flow. The degree of anisotropy of the
two-wave flow is lower than in the case of the one-wave solution. This is confirmed
by visual inspection of velocity and vorticity fields in figures 9(b, d) and 11(c, f ) and
spectra in figure 10(c, f ). A simple explanation is that the effective parameter N

for the interaction between the magnetic field and the turbulent fluctuations should
be based on the characteristics of the perturbations instead of the characteristics of
the basic flow. For example, we can substitute the r.m.s. fluctuation velocity and the
integral length scale in place of U0 and L in (1.6). Alternatively, we can use the
vorticity-based definition

Nvort =
σB2

ρω0

, (3.4)

where ω0 is a typical value of vorticity. With both definitions, the effective interaction
parameter is smaller in the two-wave flow, which agrees with the lower degree of
anisotropy.

The instability and turbulence dramatically increase the degree of mixing in a free
shear layer. In order to quantify this effect, we calculate the mean velocity profile
〈vx〉(z, t) and the 95 % thickness of the mixing layer defined as the minimum distance
from the midplane beyond which the deviation of the velocity magnitude from its
far-field value is less than 5 %

δ95(t) = min{z∗; |v(x, y, |z| >z∗, t)| > 0.95}. (3.5)

The results obtained in the one-wave and two-wave solutions are presented in
figure 13. For comparison, we also show the mean velocity profile of a purely diffusive
flow (the dashed lines) and the results of the non-magnetic simulation. The evolution
of the non-magnetic flow follows the classical path of growth and saturation of
two-dimensional billows and their subsequent three-dimensional breakdown around
t = 100.

The suppression of turbulence by the magnetic field should, in general, lead to a
decreased thickness of the mixing layer. It can be seen in figure 13(b) that this is true
for the one-wave MHD flow. δ95 grows to only about 2.5 and settles at almost diffusive
growth after t ≈ 100. Remarkably, this moment corresponds to an early stage of
the evolution of the flow structure illustrated in figures 9–11, approximately to the
phase of the spanwise instability of the oblique rolls. We see that the convective mixing
in the one-wave solution is primarily due to the growth of these rolls. Their subsequent
breakdown occurs against a background of constant decline of the perturbation energy
(see figure 8b) and, thus, does not enhance the mixing in any noticeable way.

On the contrary, the two-wave solution shows strong mixing comparable to that
achieved in the non-magnetic case; but at the early linear and weakly nonlinear
stages, the couple of symmetric oblique waves is unable to match the effect of
growing two-dimensional billows (see figure 13b). The explanation is a lower linear
growth rate (βmax = 0.192 at N =0 and βmax =0.0529 at N = 0.5). At later times, the
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Figure 13. Effect of magnetic field and initial conditions on the thickness of the turbulent
mixing layer. Re= 500, N =0.5 and 0. Initial conditions with one and two waves are used for
simulations at N = 0.5. (a) —, profiles of mean velocity 〈vx〉 at the initial moment and the
moment of developed turbulent flow (t ≈ 295). −−−, diffusive profile. (b) Thickness δ95 of the
mixing layer as a function of time. Diffusion of the unperturbed flow (−−−) is shown for
comparison.

inherent three-dimensionality of the two-wave solution gives rise to a fast transition
to turbulence and enhancement of mixing, while the development of the non-magnetic
perturbations is ‘arrested’ in the phase of quasi-steady quasi-two-dimensional billows.
This results in the comparable thicknesses in the two-wave and non-magnetic cases
during a long period of time (approximately between t ≈ 100 and t ≈ 200, as shown
in figure 13b). At later stages, the magnetic suppression of turbulence results in some
reduction of mixing. As indicated in figure 13(a), the reduction occurs primarily in
the region of strong shear around the midplane. It can also be seen in figure 13(a, b)
that the magnetic field cannot prevent excursions of strong turbulent plumes into the
outer region (to distances of more than 10 from the midplane).

Finally, we examine how the strength of the applied magnetic field affects the
instability and turbulence. The results of three numerical experiments performed at
Re= 500 and three values of the magnetic interaction parameter N = 0, 0.5 and 1.0
are presented in figure 14. The initial conditions in all simulations are formed as
combinations (3.2) of the basic flow, the most unstable eigenmodes and the random
field. The amplitudes A1 and A2 are selected so that they provide equal distributions
of initial energy in all cases. A superposition of two symmetric oblique waves is used
as an eigensolution in the cases with non-zero magnetic field.

The flow at N =1 demonstrates the same fundamental features as the flow at
N = 0.5 described above. Most importantly, unlike the non-magnetic flow, it does
not experience a lengthy phase of growth and nonlinear saturation of the quasi-
two-dimensional billows with their subsequent secondary instability. The transition
to turbulence follows the linear growth in a continuous way (see the growth of E′ in
figure 14b).

Comparing the solutions for N = 0.5 and N = 1, we observe one noticeable
difference. The transition to turbulence, marked by a sharp increase of the viscous
dissipation rate, occurs at a much later time at N =1. This can be explained by
the lower linear growth (βmax = 5.29 × 10−2 at N = 0.5 and βmax = 2.65 × 10−2 N = 1).
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N =1 is initiated by a combination of two oblique waves.

There is also some reduction in the strength of turbulence as demonstrated by the
lower peak values of E′, ε and µ. In view of the delayed transition at N = 1, it is
unclear whether the main reason for the reduction is the direct suppression of the
fluctuations by the magnetic field or the diffusion of the mean velocity profile over a
longer period of time.

4. Concluding remarks
In this paper, we revisited the instability of a free shear layer (modelled as a

temporally evolving flow initially given by the erf-function velocity profile) subject
to a parallel uniform magnetic field. The case of small magnetic Reynolds number
was considered. We provided detailed analysis of the linear instability and illustrated
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the evolving nonlinear regimes and transition to turbulence in direct numerical
simulations.

Our analysis confirms the earlier predictions of Hunt (1966) and Gotoh (1971)
that the instability occurs because of three-dimensional disturbances if the applied
magnetic field is sufficiently strong (N > 0.106). The three-dimensional eigenmodes
have the form of horizontal rolls, which are not perpendicular to the direction of
the basic flow. The oblique angle θ measured as an angle between the wavenumber
vector of the perturbation and the flow direction increases with the strength of the
magnetic field and tends to π/2 as N → ∞.

We investigated the fastest growing perturbations at supercritical Reynolds
numbers. At N between 0.106 and 0.339, such perturbations are three-dimensional
only in a finite range of Reynolds numbers, becoming two-dimensional at higher
Re. At N > 0.339, the fastest growing perturbations are always three-dimensional
and have the form of oblique rolls. The strength of the magnetic field affects only
the spatial orientation of these modes. The oblique angle increases with N , while
the horizontal and vertical dimensions, and the spatial shape of the rolls remain
unchanged.

We performed direct numerical simulations of the transition to turbulence resulting
from the instability. Two types of initial conditions were considered. In both cases,
the initial velocity field consisted of the basic flow, the fastest growing eigenmode and
low-amplitude noise. The difference was in the composition of the eigenmodes, for
which a single oblique wave (one-wave solution) or a combination of two symmetric
oblique waves with positive and negative θ (two-wave solution) were taken. We have
found that the flow evolution strongly depends on the form of the initial disturbance.
Two symmetric waves result in stronger nonlinear growth, excitation of a wider
range of length scales, stronger vorticity, and, generally, faster transition to more
intense turbulence. This is accompanied by much stronger turbulent mixing, which,
at N = 0.5, is comparable with the mixing in the non-magnetic case at the same Re.

We analysed the evolution of the two-wave solution and found it to be principally
different from the well-studied scenarios of the classical non-magnetic Kelvin–
Helmholtz instability. The first stage of the Kelvin–Helmholtz transition is always
the development of two-dimensional billows. The three-dimensionality and turbulence
appear as results of the secondary instability through pairing, spanwise waves in the
braid region, etc. On the contrary, the two growing symmetric oblique waves generate
the three-dimensionality immediately, in their direct interaction with each other, basic
flow and the magnetic field. We have seen that this interaction can lead to a fast
transition to turbulence and efficient mixing.

Another important difference between the MHD and the non-magnetic cases is the
state of the developed turbulent mixing layer. Not only does the magnetic field add
suppression by the Joule dissipation, it also introduces anisotropy. The flow structures
are elongated in the direction of the magnetic field. We saw that, as is typical for
the decaying turbulence, the anisotropy is quite strong even at moderate magnetic
interaction parameters such as N = 0.5.

In real flows, the unstable perturbations occur in a wide range of horizontal
wavenumbers kx and ky with positive and negative oblique angles. The transition is
likely to involve the interaction between several such modes in a manner consistent
with our two-wave solution.

What would be the strength of the magnetic field, at which the phenomena discussed
in the paper would appear in laboratory or industrial flows? We can make a simple
estimate by considering a ‘typical’ liquid metal of density ρ = 104 kg m−3 and electric
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conductivity of σ =106 S m−1. For a flow with L = 0.1m and U = 1 m s−1, the critical
magnetic field corresponding to NF ≈ 0.1, i.e. the field above which the first instability
is to an oblique wave, is between 0.03 and 0.1 T. Such values are commonly exceeded
in experiments and in industrial processes.

Our last comment suggested by a reviewer concerns the instability and transition in
shear layers with other orientations of the magnetic field. A few qualitative predictions
can be made without detailed analysis. A normal field B = (0, 0, B) would interact
with the basic flow (1.1) and generate the Lorentz force (in non-dimensional form)
N( j × B) = (−NU (z), 0, 0), i.e. the force tending to eliminate the velocity gradient in
the z-direction and to accelerate the decay. The normal field is not expected to modify
the symmetry of the unstable waves as the parallel field does in our paper, but it
can modify the spatial shape of the spanwise and three-dimensional perturbations
through direct suppression and accelerated decay of the basic shear.

A spanwise field B = (0, B, 0) does not interact with the basic flow or with purely
spanwise perturbations. The first stage of the classical hydrodynamic instability,
namely growth and saturation of two-dimensional billows would, therefore, not be
affected. The subsequent three-dimensional breakdown and transition to turbulence
would, however, be delayed and suppressed. This opens the possibility of finite-
amplitude spanwise billows stabilized by the magnetic field and evolving, at sufficiently
high Reynolds numbers, into ‘quasi-two-dimensional’ turbulence. The term ‘quasi’ is
used here as a precaution since it is still unclear whether ‘true’ two-dimensional
turbulence can be realized in three-dimensional systems, even in the presence of a
very strong magnetic field. Discussions of this can be found, for example, in Tsinober
(1990) and Thess & Zikanov (2005).
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Program at the Université Libre de Bruxelles, Belgium. The authors wish to thank
the organizers, especially D. Carati and B. Knaepen, for their hospitality. The work
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The authors have benefited from fruitful discussions with A. Thess, J. C. R. Hunt,
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